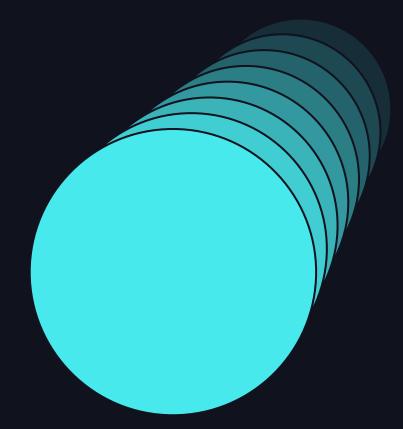
DATA⁺AI SUMMIT BY S databricks

PROMPT ENGINEERING IS DEAD



A practitioner's approach to building LLM Apps Presented June 12 , 2024

DATA⁺AI SUMMIT

HI. I'M MATT

Today we'll dig into exciting research and tools to build better LLM apps

- I'm a practitioner with over 15 years of business, technology and data science experience. My primary focus today will be to present methods to help other practitioners.
- I'm not a researcher or affiliated with the amazing folks who do the real work behind the insights and tools we're discussing today. I will footnote many sources in this presentation - as not to take credit from whom it's due.
- The views expressed and examples are my own. I will not cover any exact use cases from my current or former employers.

DATAAI SUMMIT

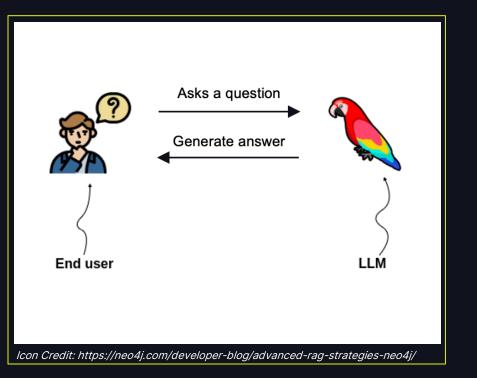
AGENDA

- 1. Why build agents
- 2. Prompting strategies & evaluating prompt quality
- 3. Why I love DSPy framework & using it with Databricks
- 4. Demonstration

BUILDING AGENTS LEVERAGING LANGUAGE MODELS

THE BLACK BOX APPROACH

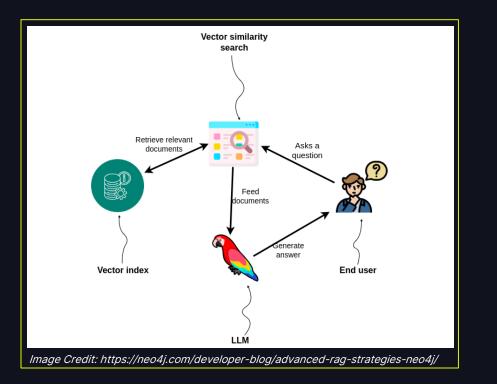
User's may see the black box magic and assume we just need a magic prompt



- Don't be fooled, a single LLM call (or RAG) and a magic prompt may get you 80% of the way to a great app, but the last 20% require a different approach
- There will be a future LLM abstraction, years from now, that only requires a single call to a black box. Today's practical application of LLMs require more.

THE BLACK BOX APPROACH

RAG is a step in the right direction, but still requires "prompt engineering"



- Don't be fooled, a single LLM call (or RAG) and a magic prompt may get you 80% of the way to a great app, but the last 20% require a different approach
- There will be a future LLM abstraction, years from now, that only requires a single call to a black box. Today's practical application of LLMs require more.

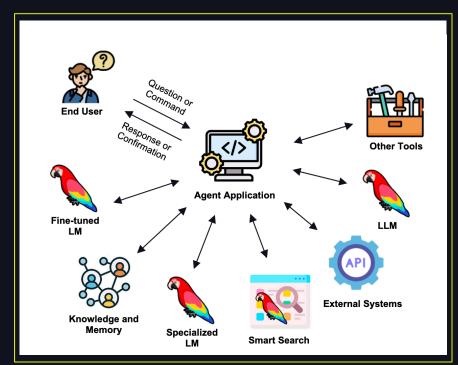
THE AGENT APPROACH

Al agents who take a sequence of actions for us is the real promise of Al

- The value will be found in agents who interact with other systems and the world around us
- A LM app with language inputs and outputs can still leverage an agent approach
- An agent is intellectual property (IP) for your enterprise
- We can optimize performance and latency of agents

Sources and Resources:

- changelog.com/practicalai/269
- writer.com/blog/larger-llms-vs-purpose-built-for-enterprise



Icon credit: neo4j.com/developer-blog/knowledge-graphs-Ilms-multi-hop-question-answering; Flaticon.com

RESEARCH TO GUIDE THE WAY

These papers shaped my thinking on an agent approach

DSPy: [...] Self-improving Pipelines

- Framework for programmatically building pipelines and optimizing the outputs
- This will form the bulk of our examples today

Sources:

- Khattab et al., 2023
- arxiv.org/pdf/2310.03714
- youtube.com/watch?v=NoaDWKHdkHg
- github.com/stanfordnlp/dspy

Large Language Models As Optimizers

- Similar prompts can have very different outcomes
- The best prompt is specific to the task and model
- LLMs outperform humans at prompt optimization
- LLMs perform better in simpler problem spaces

Sources:

- Yang et al., 2023
- https://arxiv.org/pdf/2309.03409

ERAGent: Enhancing Retrieval-Augmented LMs...

- RAG systems benefit from question rewriting and retrieval filtering and re-ranking
- Personalization is possible with further agent tuning on historical interactions

Sources:

- Shi et al. 2024
- arxiv.org/pdf/2405.06683

PROMPTING STRATEGIES & EVALUATING PROMPT QUALITY

PROMPT ENGINEERING STRATEGIES

Many strategies have emerged to prompt the "right answer" out of a LM

- Zero Shot directly instructing LM without any example
- Few Shot prompting examples of how the LM should behave
- Ask Nicely being encouraging helps LM perform better?!
- Chain of Thought ask model to describe logic in output
- Chain of Density / Rewrite Iterative prompts to refine output
- ReAct allow LM to reason through action to take next
- Stepback Prompting Generalizing fundamental question with LM before answering
- Prompt Injection Jailbreaking, hacking, and other bad outcomes
- Chaining prompts the basis for the agent approach we're discussing today
- And MANY more...

10

Many more

examples at: promptingguide.ai/

techniques

EVALUATING PROMPT QUALITY

The first step in prompt engineering is NOT writing a prompt!

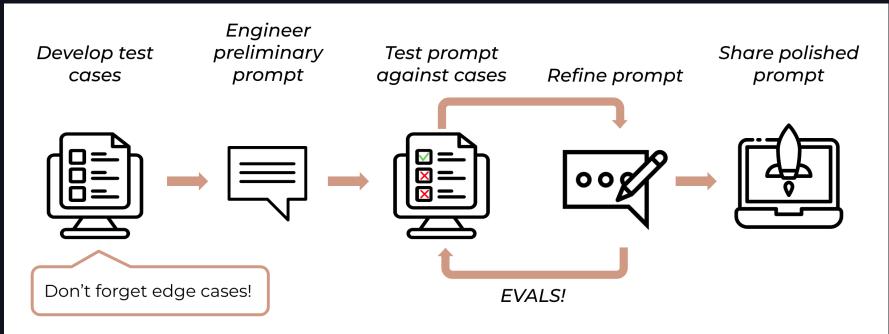


Image source: docs.anthropic.com/en/docs/prompt-engineering

EVALUATING PROMPT QUALITY

Let's learn the lessons of DevOps and QE. Automated testing is everything!

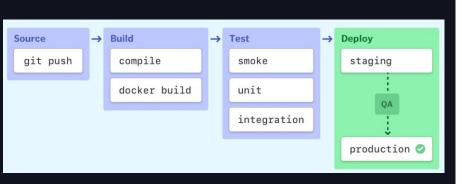


Image source: semaphoreci.com/blog/cicd-pipeline

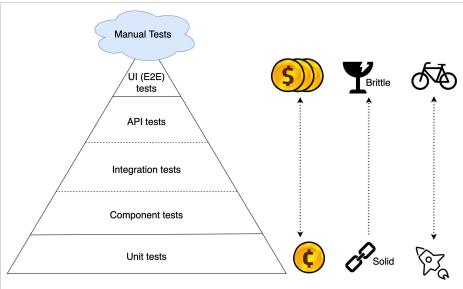


Image source: https://getmason.io/blog/post/test-pyramid/

Don't bother figuring out what special magic combination of words will give you the best performance for your task. Just develop a scoring metric then let the model optimize itself.

-- Rick Battle, VMware (paraphrase) "Don't Start a Career as an AI Prompt Engineer." IEEE Spectrum May 2024 Issue "A lot of people anthropomorphize [LLMs] because they 'speak English.' No, they don't. It doesn't speak English. It does a lot of math."

-- Rick Battle, VMware (paraphrase) "Don't Start a Career as an AI Prompt Engineer." IEEE Spectrum May 2024 Issue

LM EVALUATION STRATEGIES

Building good metrics == effective LM app. It's hard; that's why you have a job

Standard Metrics

- Exact Match (numeric and categorization tasks)
- BLEU, ROUGE, METEOR, BERTScore
- Custom, hand-written

Libraries and SaaS

- RAGAs et al.
- SaaS tools

Cross-Model Evaluation

- LLMs are actually pretty good a evaluating themselves – as an in context task!
- RLHF-ish
- MLFlow.evaluate
- DSPy custom program

WHY I LOVE DSPy FRAMEWORK & USING IT WITH DATABRICKS

WHY DSPy?

DSPy makes it easy to follow the data science process when building LM apps

Why DSPy?

•Created by Omar Khattab et al. at Stanford

•I listened to an interview with Omar in 2023 and thought it brilliant. *I'm not affiliated with the project in any way.*

•Framework for implementing all the concepts we discussed so far

General Workflow

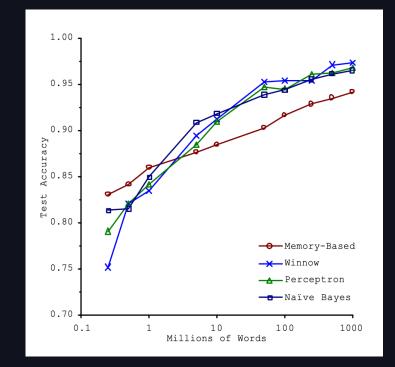
- 1. Define you task
- 2. Collect some data and LM/RM connection
- 3. Define your metric
- 4. Setup a pipeline
- 5. Compile/Optimize your program
- 6. Save your experiment and iterate

Source: dspy-docs.vercel.app/docs/building-blocks/solving_your_task

DATA MATTERS MOST

One of the most famous charts in Data Science, still holds true after 23 years

- In 2001, Microsoft Research published a paper noting accuracy came from more data rather than the algorithm
- I use DSPy because it let's me focus on the data – not the prompt or the code.



Scaling to Very Very Large Corpora for Natural Language Disambiguation. 2021. Banko and Brill

INTEGRATING WITH DATABRICKS

It's simple to use DSPy in Databricks

1. Install the libs
!pip install dspy-ai, databricks-vectorsearch

PYTHON

2. Create configuration to Databricks' served LM and/or Vector DB import os, dspy

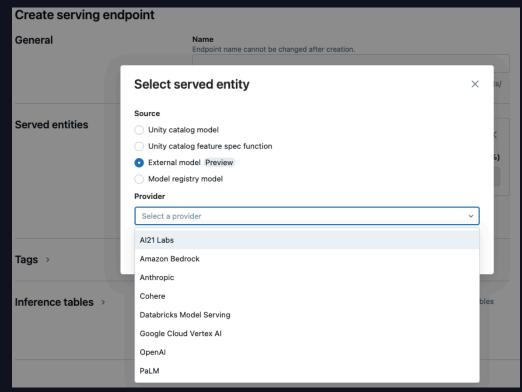
api_key = os.environ.get('DATABRICKS_TOKEN')
workspace = '[your workspace here]'
api_base = f'https://{workspace}.azuredatabricks.net/serving-endpoints'
model = 'databricks-mixtral-8x7b-instruct', # name of served model

Setup the clients
Im = dspy.Databricks(model, api_key, api_base, model_type='chat')
retriever_model = DatabricksRM(databricks_index_name, databricks_endpoint, databricks_token, columns, k)

Set config in dspy
dspy.settings.configure(Im=Im, rm=retriever_model)

SIDENOTE: EXTERNAL MODEL SERVING

Using Databricks' External Model Serving unifies interface and authorization



THREE IMPORTANT CONCEPTS IN DSPy

These are the building blocks to create agents

Signatures

- Defines the inputs and outputs of one component in your pipeline
- This takes the place of writing a prompt
- Examples: "input -> output"
 - "question -> answer"
 - "sentence -> sentiment"
 - "document -> summary"

Source: dspy-docs.vercel.app/docs/ building-blocks/signatures

Modules

- Implements a prompt engineering strategy
- Is the learnable param(s) wrapped around a Signature (inspired by PyTorch modules)
- This is the layer that interacts with an LM or Retrieval
- Combine into a full program, and can run as zero-shot

Source: dspy-docs.vercel.app/docs/ building-blocks/modules

Optimizers

- This is the brilliant part of this framework and results in better than human prompt writing results!
- Defines the prompt optimization method and metric
- You'll want train/test/holdout data at this point

Source: dspy-docs.vercel.app/docs/ building-blocks/optimizers

Deeper Dive on Optimizers

There are MANY options to experiment with. Start simply and expand.

- Each Module in your program has multiple params to tune: prompt instructions and few shot demonstrations (and even LM weights, if desired)
- Thoughtful construction of the metric to optimize is key
- Key Optimizers, in order of complexity:
 - BootstrapFewShotWithRandomSearch searches for best set of few shot prompt
 - MIPRO optimizes prompt instructions and few shot demonstrations
 - BootstrapFinetune fine tunes LM 's weights for optimization

DEMONSTRATION

DATAAI SUMMIT

THANK YOU FOR LISTENING